The Impact of Temporary Agency Work on Trade Union Wage Setting

A Theoretical Analysis*

Thomas Beissinger†
University of Hohenheim and IZA, Bonn

Philipp Baudy
University of Hohenheim

December 9, 2014

Abstract

Focusing on the cost-reducing motive behind the use of temporary agency employment, this paper aims at providing a better theoretical understanding of the effects of temporary agency work on the wage-setting process, trade unions’ rents, firms’ profits and employment. It is shown that trade unions may find it optimal to accept lower wages to prevent firms from using temporary agency workers. Hence, the firms’ option to use agency workers may affect wage setting also in those firms that only employ regular workers. However, if firms decide to employ agency workers, trade union wage claims will increase for the (remaining) regular workers. A relatively more intensive use of temporary agency workers in high-wage firms may therefore be the cause and not the consequence of the high wage level in those firms. Even though we assume monopoly unions that ascribe the highest possible wage-setting power to the unions, the economic rents of trade unions decline because of the firms’ option to use temporary agency work, whereas firms’ profits increase.

JEL Classification: J51; J31; J23; J42

Keywords: Trade Unions, Temporary Agency Work, Wage-Setting Process, Labour Market Segmentation, Dual Labour Markets

*We especially thank Martyna Marczak as well as the participants of the 63rd Annual Meeting of the French Economic Association 2014, the Warsaw International Economic Meeting 2014, the 2014 Annual Congress of the EEA/ESEM, and the Tübingen-Hohenheim Economics Christmas Workshop 2014 for their helpful and valuable comments and suggestions.

†Corresponding author: University of Hohenheim, Schloss, Museumsflügel (520G), 70593 Stuttgart, Germany. Email: beissinger@uni-hohenheim.de
1 Introduction

Usually, trade unions put up strong resistance to the employment of temporary agency workers and the perceived weakening of pay and labour standards. However, as pointed out by Böheim & Zweimüller (2009), in a given firm it is not necessarily clear a priori whether the trade union will oppose the employment of temporary agency workers. The reason is that cost savings and increases in profits could enable unions to extract higher rents in firms that employ agency workers. The theoretical analysis in this paper will shed more light on the question whether trade unions may profit from the introduction of temporary agency work or not. In more general terms, it will be analysed how trade unions react to the firms’ option to employ temporary agency workers and how this change in trade unions’ wage-setting behavior affects firms’ profits, unions’ rents, and employment. As far as we know, this is the first theoretical paper dealing with the impact of temporary agency work on trade union wage setting.

Temporary agency work constitutes a tripartite relationship, in which a temporary agency worker is employed by the temporary work agency and, by means of a commercial contract, is hired out to perform work assignments at a client firm. This client firm then has to pay a fee to the temporary work agency. In the following, temporary agency workers are referred to as temporary workers or agency workers. During the past few decades the share of agency workers in the total workforce has significantly increased in almost all OECD countries. Though the great recession starting in 2007 led to a cyclical decline in temporary agency work, in many countries the agency work penetration rate seems to resume its upwards trend. For example, from 1996 to 2011, the agency work penetration rate increased from 0.9 to 1.6 percent in Europe (with a peak of 2 percent in 2007), from 0.5 to 1.5 percent in Japan (with a peak of 2.2 percent in 2008), whereas it remained on the same level of 1.9 percent in the USA (with peaks of 2.2 percent in 2000 and 2005), see Ciett (2013).

\footnote{See, for example, Heery (2004) for the UK, Coe et al. (2009) for Australia and Olsen & Kalleberg (2004) for Norway and the US.}
Various motives are behind the use of temporary agency employment (see, for example, Holst et al., 2010). Some motives have to do with the firm’s necessity to react to a changing environment under uncertainty. In this case, temporary agency work is used as a “flexibility buffer”. For example, the demand for temporary workers may be induced by the needs to adjust for workforce fluctuations and staff absences or to deal with greater uncertainty about future output levels (see Houseman, 2001 and Ono & Sullivan, 2013). Other motives are more of a strategic nature and have to do with the potential of using temporary agency employment to cut wage costs and increase profits. This strategic motive is well documented in the empirical literature. The focus of our model is on this cost-reduction motive behind the use of temporary agency employment and how this affects the “effective” wage bargaining power of trade unions.

One of our results will be that the option to use agency workers may affect wage setting also in those firms that do not employ temporary agency workers. This is an important result for at least two reasons. First, empirical studies may come to wrong conclusions if they try to identify the wage effects of temporary agency work by comparing wage levels for regular workers in firms with and without temporary agency work. Second, though the share of agency workers in the total workforce is only about two percent in many OECD countries, the impact of temporary agency work on the wage-setting process may be much larger.

From a methodological point of view, our theoretical model is related to papers discussing the impact of international outsourcing on trade union wage-setting. For example, in Koskela & Schöb (2010) and Skaksen (2004) the firms’ option to outsource some part of production dampens wage claims of trade unions. Lommerud et al. (2006) analyse how international mergers might restrain the market power of unions in oligopoly markets. In those papers, the outsourcing or merging option imposes a threat to the bargaining power of trade unions, whereas in our paper the “effective” bargaining power of trade unions is eroded by the possibility to replace regular workers by temporary agency workers.

\(^2\)See, for example, Mitlacher (2007). Jahn & Weber (2012) show that temporary agency employment may indeed be used to replace regular workers.
The remainder of the paper is organised as follows. Section 2 outlines the theoretical framework and explains the components of the theoretical model. Section 3 derives the labour demand functions for regular workers for two employment regimes. In one regime only regular workers are used, whereas in the other regime agency workers are employed as well. Section 4 analyses the wage-setting behaviour of trade unions when firms have the option to also employ agency workers. The implications for trade unions’ rents, firms’ profits and employment are also derived. Section 6 contains a summary and some conclusions.

2 Outline of the model

We consider a simple model of a closed economy with imperfect competition in goods and labour markets. There are two types of agents in the economy: Besides workers, who supply labour and do not own capital, there are also capitalists, who own the firms and do not supply labour. There also exist two types of firms in the economy: Productive firms produce final goods by using regular workers and possibly also temporary agency workers in production. Temporary work agencies lend temporary workers to productive firms. Between productive firms monopolistic competition prevails in the goods market. Because of barriers to market entry (that are, for simplicity, not explicitly modelled) the number of productive firms is given and monopoly rents are earned in the goods market. Firms and workers are given by a [0,1] continuum, implying that employment in the representative firm corresponds to the aggregate employment rate. Firm-level trade unions determine wages on behalf of employed regular workers and try to appropriate some share of the rents for their members. Agency workers, however, are not covered by trade unions’ wage agreements.

Our model belongs to the class of the so-called “right-to-manage” models, in which firms retain the right to choose the employment level. In contrast, in an “efficient bargaining model” firms and trade unions bargain over both, wages and employment. Whereas in the first class of models the equilibrium lies on the labour demand curve, in the latter
case the bargaining outcome lies on a contract curve which usually is different from the labour demand curve. Since the implications of these model classes may be quite different, our decision to base the analysis on the right-to-manage model is justified in detail in Appendix A.1. Our model consists of the following core elements:

i) Productive firms. The technology of the representative productive firm is described by the following production function

\[Y = S_1^\alpha S_2^\beta \quad \alpha + \beta \leq 1, \tag{1} \]

where \(S_1 \) denotes the segment (intermediate) that can be solely produced by regular workers \(L_1 \), whereas segment \(S_2 \) can be produced by regular workers \(L_2 \) and/or by temporary workers \(\tilde{L}_2 \). It is assumed that

\[S_1 = L_1 \tag{2} \]
\[S_2 = L_2 + \delta \tilde{L}_2 \quad 0 < \delta \leq 1. \tag{3} \]

Temporary workers might be less productive than regular workers, in which case \(\delta < 1 \) holds. Thus, \(\delta \tilde{L}_2 \) as well as \(L_1 \) and \(L_2 \) may be interpreted as labour in “efficiency units”, where in the latter cases productivity is normalized to one. Total regular employment is \(L = L_1 + L_2 \). The goods demand function for the productive firm is

\[Y = p^{-\eta} Q \quad \eta > 1, \tag{4} \]

with \(p \) denoting the firm’s price relative to the aggregate price level and \(\eta \) denoting the price elasticity of the demand for goods (in absolute values).\(^3\) \(Q \) is the share of aggregate demand (being equal to aggregate output) that would accrue to the single firm if \(p = 1 \). If a productive firm wants to employ a temporary worker, a fee \(\tilde{x} \) must be paid to the temporary work agency. Real profits of the productive firm are

\[\Pi = pY - w(L_1 + L_2) - x\delta \tilde{L}_2, \tag{5} \]

\(^3\)This isoelastic goods demand function of the Blanchard & Kiyotaki (1987) type is often used in the literature and can be derived from Dixit & Stiglitz (1977) preferences.
where \(w \) denotes the gross real wage rate for regular workers and \(x \) denotes the real fee per temporary worker in “efficiency units”, i.e.

\[
x \equiv \frac{\tilde{x}}{\delta}.
\]

(6)

In other words, \(x \) denotes the costs of producing one unit of \(S_2 \) if temporary workers are used for production. Firms compare these costs with the costs \(w \) of producing one unit of \(S_2 \) using regular workers.

ii) Temporary work agencies. It is assumed that temporary workers are just on the books of the temporary work agency when they are “idle”, i.e. agency workers only receive a payment by the temporary work agency when they are assigned to a job at a client firm. This assumption captures quite well the institutional framework for temporary work in the UK, and to some extent the Netherlands or France, to name only some examples. In other countries, such as Germany and Sweden, temporary workers get an employment contract and obtain wage payments by the temporary work agency even when they are not assigned to a client firm.\(^4\) However, as pointed out by Kvasnicka (2003), hirings by temporary work agencies occur primarily on-call as a reaction to current client demand to avoid the risk of initial prolonged unproductive employment of workers. In other words, the first assignment of a worker at a client firm almost always coincides with the moment the worker is hired by the temporary work agency, whereas activities such as screening take place prior to hiring. Our assumption therefore seems to be appropriate for the analysis of temporary work in a static model as it is considered in this paper.

It is assumed that the profits of a temporary work agency are equal to \((\tilde{x} - \omega - s)\tilde{L}_2\), where \(\omega \) denotes the gross real wage rate of the temporary worker and \(s \) denotes real screening and search costs implied by the hiring of the temporary worker. Moreover, it is assumed that there is free market entry reflecting the fact that the establishment of a

\(^4\)The latter case has been analysed in the matching models of Neugart & Storrie (2006) and Baumann et al. (2011). Alternatively, Neugart & Storrie (2006) also analysed a model variant where workers are just on the books of the temporary work agency, which did not affect their main results (see their footnote 8).
temporary work agency does not imply large irreversible investments as it is the case for most productive firms. Since in equilibrium zero profits prevail, it must hold that

\[\tilde{x} = \omega + s. \]

(7)

iii) Trade unions. It is assumed that all employed regular workers are union members. Firm-level trade unions determine the wage for regular workers by maximising the rent accruing to their members.\(^5\) The utility function of the representative union is \(U = L(w_n - b_n) \), where \(w_n \) and \(b_n \) denote net real wages and net unemployment benefits, respectively. This specification takes into account that in many countries unemployment benefits are also subject to income taxation. Net wages and benefits are defined as \(w_n \equiv (1 - \tau_w)w \) and \(b_n \equiv (1 - \tau_b)b \), where \(\tau_w \) and \(\tau_b \) denote the tax rate for wages and benefits, respectively. As in Beissinger & Egger (2004), we consider a situation in which \((1 - \tau_b) = \phi (1 - \tau_w) \), with \(\phi \geq 1 \). The government often imposes a lower tax burden on unemployment benefits implying \(\phi > 1 \), whereas \(\phi = 1 \) holds if taxes on wages and unemployment benefits are the same. Both tax regimes are therefore taken into account by writing the trade union utility function as

\[U = L \left(1 - \tau_w \right) (w - \phi b), \quad \text{with} \quad \phi \geq 1. \]

(8)

iv) Temporary workers. Following the matching models of Neugart & Storrie (2006) and Baumann et al. (2011), we assume that agencies are able to set the wage \(\omega \) equal to the reservation wage of workers. The temporary work agency therefore offers a wage making its workers at the margin indifferent to either being hired by the agency or staying unemployed. This assumption captures the fact that in many countries agency workers have a very weak bargaining position.\(^6\) From the aforementioned matching models it is

\(^5\) We consider a monopoly union model instead of a bargaining model in order to keep the analysis as simple as possible. A Nash bargaining model would lead to the same qualitative results.

\(^6\) This is, for example, pointed out in Eurofound (European Foundation for the Improvement of Living and Working Conditions) (2008). According to this study, research findings also suggest that agency workers may have limited knowledge of their rights or the means to apply them.
known that the payment of temporary workers may be lower than, equal to or greater than unemployment benefits depending on whether temporary workers find regular jobs more likely than unemployed workers or not (see eqs. (16) and (17) in Baumann et al., 2011). We assume that the temporary work agency offers a gross real wage ω so that the net real wage $\omega_n = (1 - \tau_w)\omega$ equals net unemployment benefits b_n. Implicitly, it is therefore assumed that the job finding probability is the same for unemployed and temporary workers. The assumption $\omega_n = b_n$ implies

$$\omega = \phi b \quad \text{with} \quad \phi \geq 1.$$ \hfill (9)

v) Government budget constraint. The tax receipts of the government are solely used to finance unemployment benefits, hence in the case of a balanced budget

$$\tau_w w(L_1 + L_2) + \tau_w \omega \tilde{L}_2 = (1 - \tau_b) b [1 - L_1 - L_2 - \tilde{L}_2].$$ \hfill (10)

The government may determine the level of net unemployment benefits by choosing τ_b and b. From the condition for a balanced budget then the tax rate τ_w follows.

vi) Solution of the model. In the model, the agents’ decisions are taken in two stages. In the first stage, the trade union determines the wage level for regular workers and the temporary work agency determines the fee it claims for the employment of an agency worker at a client firm. Because of the zero profit condition for temporary work agencies in eq. (7), the earnings equation (9) for agency workers, and eq. (6), the fee for an agency worker (in efficiency units) simply is $x = (\phi b + s)/\delta$. In the second stage, the firm decides on whether to use temporary workers or not and also determines the employment levels of regular workers and (possibly) temporary workers. This is taken into account by the trade union in the determination of the wage level. In order to obtain a subgame perfect equilibrium, the two-stage game must be solved by backward induction. Notice that the firm’s decision to employ temporary workers can be made quite “spontaneously” and can be easily reversed, since it does not require irreversible investment decisions. Hence, it is quite natural to assume that trade union wages are determined before the firm decides on the use of temporary agency workers and not the other way round.
3 The determination of labour demand

In stage 2, each productive firm chooses the number of regular and temporary workers. The fee \(x \) that has to be paid to the temporary employment agency for a temporary worker (in efficiency units) and the wage rate \(w \) for a regular worker are already determined (from stage 1). Inserting eqs. (1) to (4) into eq. (5), the profit maximisation problem of the representative firm is

\[
\max_{L_1, L_2, \tilde{L}_2} \pi = L_1^{\alpha \kappa} \left(L_2 + \delta \tilde{L}_2 \right)^{\beta \kappa} Q^{1-\kappa} - w (L_1 + L_2) - x \delta \tilde{L}_2 \quad \text{s.t.} \quad L_2 \geq 0, \tilde{L}_2 \geq 0, \tag{11}
\]

where the parameter \(\kappa \) is defined as \(\kappa \equiv (\eta - 1)/\eta \), with \(0 < \kappa < 1 \). The lower \(\kappa \), the higher the monopoly power of firms. The first-order conditions are:

\[
\begin{align*}
\frac{\partial \pi}{\partial L_1} &= \alpha \kappa L_1^{\alpha \kappa-1} (L_2 + \delta \tilde{L}_2)^{\beta \kappa} Q^{1-\kappa} - w = 0, \\
\frac{\partial \pi}{\partial L_2} &= \beta \kappa L_1^{\alpha \kappa} (L_2 + \delta \tilde{L}_2)^{\beta \kappa-1} Q^{1-\kappa} - w \leq 0, \quad L_2 \geq 0, \quad \frac{\partial \pi}{\partial L_2} L_2 = 0, \\
\frac{\partial \pi}{\partial \tilde{L}_2} &= \beta \kappa L_1^{\alpha \kappa} (L_2 + \delta \tilde{L}_2)^{\beta \kappa-1} Q^{1-\kappa} - x \leq 0, \quad \tilde{L}_2 \geq 0, \quad \frac{\partial \pi}{\partial \tilde{L}_2} \tilde{L}_2 = 0.
\end{align*}
\]

It follows from the first-order conditions that three cases can be distinguished depending on whether the wage rate \(w \) for regular workers is lower than, equal to or higher than the costs \(x \) of temporary workers.

Case I: \(w < x \).

If \(w < x \), it is cheaper to employ only regular workers, hence \(L_2 > 0 \) and \(\tilde{L}_2 = 0 \). From the first-order conditions the following labour demand functions are obtained:

\[
\begin{align*}
L_1 &= L_1(w) = A_1 \cdot \left[Q^{1-\kappa} w^{-1} \right]^{1/[1-\kappa(\alpha+\beta)]}, \\
L_2 &= L_2(w) = A_2 \cdot \left[Q^{1-\kappa} w^{-1} \right]^{1/[1-\kappa(\alpha+\beta)]}, \tag{12}
\end{align*}
\]

with

\[
A_1 \equiv \left[(\alpha \kappa)^{1-\beta \kappa} \cdot (\beta \kappa)^{\beta \kappa} \right]^{1/[1-\kappa(\alpha+\beta)]} \quad \text{and} \quad A_2 \equiv \left[(\alpha \kappa)^{\alpha \kappa} \cdot (\beta \kappa)^{1-\alpha \kappa} \right]^{1/[1-\kappa(\alpha+\beta)]}. \tag{13}
\]

Because of eq. (1), both segments are essential for production. The corresponding labour input conditions \(L_1 > 0 \) and \(L_2 + \tilde{L}_2 > 0 \) are not explicitly taken into account in eq. (11).
Therefore, total demand L for regular workers is given by

$$L = L_r(w) = (A_1 + A_2) \left[Q^{1-\kappa} w^{-1} \right]^{1/[1-\kappa(\alpha+\beta)]},$$ \hspace{1cm} (14)$$

where the index r denotes the situation in which only regular workers are employed. The wage elasticity of labour demand (in absolute values), denoted as ε_r, is

$$\varepsilon_r = \frac{1}{1-\kappa(\alpha+\beta)}. \hspace{1cm} (15)$$

Case II: $w = x$.

This situation describes the borderline case in which the firm is indifferent between employing regular workers and temporary workers in the production of S_2. The number of regular workers in the production of S_2 could therefore vary between 0 and $L_2(x)$, where $L_2(x)$ denotes the labour demand function $L_2(w)$ from eq. (12) evaluated at $w = x$. For ease of exposition we assume that the firm only employs regular workers if $w = x$.\footnote{This behaviour would result if the trade union claimed a wage w that is marginally lower than x.} Hence, in case II the same labour demand demand function for regular workers as in eq. (14) (evaluated at $w = x$) results, i.e.

$$L = L_r(x) = (A_1 + A_2) \left[Q^{1-\kappa} x^{-1} \right]^{1/[1-\kappa(\alpha+\beta)]}. \hspace{1cm} (16)$$

Case III: $w > x$.

In this case profits are maximised by using only temporary workers in the production of S_2, hence $L_2 = 0$ and $\tilde{L}_2 > 0$. The labour demand functions are:

$$L_1 = L_1(w, x) = A_1 \left[Q^{1-\kappa} w^{-(1-\beta\kappa)} x^{-\beta\kappa} \right]^{1/[1-\kappa(\alpha+\beta)]}$$

$$\tilde{L}_2 = \tilde{L}_2(w, x) = \left(\frac{1}{\delta}\right) A_2 \left[Q^{1-\kappa} w^{-\alpha\kappa} x^{-(1-\alpha\kappa)} \right]^{1/[1-\kappa(\alpha+\beta)]}, \hspace{1cm} (17)$$

with A_1 and A_2 being defined as in case I. Total labour demand for regular workers in case III equals L_1, i.e.

$$L = L_t(w, x) = A_1 \left[Q^{1-\kappa} w^{-(1-\beta\kappa)} x^{-\beta\kappa} \right]^{1/[1-\kappa(\alpha+\beta)]}, \hspace{1cm} (18)$$
where the index \(t \) denotes the situation in which only temporary workers are employed in the production of \(S_2 \). In this case, the demand for regular workers also depends on the fee for temporary workers because of the complementarities in production between segments \(S_1 \) and \(S_2 \). For example, if the number of temporary workers in the production of \(S_2 \) is reduced because these workers become more expensive, the demand for regular workers in the production of \(S_1 \) is reduced as well. The wage elasticity of labour demand for regular workers (in absolute values) now becomes

\[
\varepsilon_t = \frac{(1 - \beta \kappa)}{1 - \kappa(\alpha + \beta)}.
\]

(19)

Notice that both labour demand elasticities, \(\varepsilon_r \) and \(\varepsilon_t \), are constant and greater than one. Moreover, notice that \(\varepsilon_t < \varepsilon_r \) holds. If temporary workers are employed as well, the labour demand elasticity for regular workers gets smaller (in absolute values) because of the decline in the share of regular employment in total costs.

4 Union wage determination for regular workers

In stage 1, trade unions choose the wage that maximises the economic rent for employed regular members, defined in eq. (8), taking into account that employment is determined by firms in stage 2. Whether firms use temporary workers or not depends on the size of the fee for temporary workers relative to the wage that has to be paid to regular workers. Segment \(S_2 \) is produced by regular workers if \(w \leq x \), whereas it is produced by temporary workers if \(w > x \). Since trade unions determine the wage \(w \) for regular workers, their actions also affect the employment level chosen by firms.

In the following analysis it will turn out that there exist three wage-setting regimes, denoted as regimes \(R \), \(X \) and \(T \), respectively. In regime \(R \), the representative trade union claims the wage \(w_R \), defined as the monopoly wage if the labour demand function is \(L_r(w) \), and the corresponding firm chooses the employment level \(L_r(w_R) \). In regime \(X \), the trade union finds it optimal to set a wage \(w_X = x \) that equals the fee for temporary workers and the employment level is \(L_r(x) \). In regime \(T \), the trade union claims the wage \(w_T \), defined
as the monopoly wage if the labour demand function is $L_t(w, x)$, and the firm chooses the employment level $L_t(w_T, x)$. Which regime prevails depends on the fee x for temporary workers relative to two threshold values \underline{x} and \overline{x}, with $\underline{x} < \overline{x}$, as depicted in Figure 1. If $x \ge \overline{x}$, the trade union will choose the wage-setting regime R. For $x < \overline{x}$, the regime T will be chosen, whereas for intermediate values of the fee, $\underline{x} \le x < \overline{x}$, the wage-setting regime X will be implemented.9

![Figure 1: Three wage-setting regimes for regular workers depending on the size of the fee for temporary workers](image)

Before moving on to prove these statements, the monopoly wages and corresponding employment and utility levels for the regimes R and T are derived. As shown in Appendix A.2, in these regimes each union sets the wage for regular workers as a mark-up over unemployment benefits, with the mark-up depending negatively on the wage elasticity of labour demand for regular workers. As has been shown in Section 3, the labour demand elasticities differ depending on whether the firm uses only regular workers or also temporary workers in production. In regime R, the rent-maximising wage for regular workers claimed by the trade union is

$$w_R = \frac{1}{(\alpha + \beta)\kappa} \phi b,$$

leading to the employment level $L_r(w_R)$ determined by eq. (14). The trade union then

9Notice that in the wage-setting regimes R and X only regular workers are employed, i.e. the firm chooses the employment level according to the $L_r(w)$ function. The indices r and t just distinguish the labour demand functions and have a different meaning than the indices for the wage-setting regimes R, X and T.

11
achieves the utility level

\[V_R = L_r(w_R) (1 - \tau_w) (w_R - \phi b). \]

(21)

In regime T, the rent-maximising wage for regular workers becomes

\[w_T = \frac{1 - \beta \kappa}{\alpha \kappa} \phi b, \]

(22)

leading to the employment level \(L_t(w_T, x) \) determined by eq. (18). Interestingly, it turns out that \(w_T > w_R \). If the firm uses temporary agency work, the union’s wage claim for the remaining regular workers is higher than the rent-maximising wage if only regular workers are employed. The reason is that the labour demand elasticity for regular workers is lower (in absolute values) if also temporary workers are employed. In regime T, the trade union achieves the economic rent

\[V_T(x) = L_t(w_T, x) (1 - \tau_w) (w_T - \phi b). \]

(23)

As can be seen from this equation, the monopoly rent in regime T is a function of the fee for temporary workers. While \(w_T \) is constant, labour demand \(L_t(\cdot) \) for regular workers negatively depends on the fee \(x \). As a consequence, \(V_T \) also negatively depends on \(x \).

An intuition for the determination of the threshold values \(\underline{x} \) and \(\bar{x} \) and the separation of the different wage-setting regimes is most easily obtained by looking at Figure 2 that describes the labour market for regular workers. The curve \(L_r(w) \) represents labour demand in case only regular workers are employed in the production of both segments, whereas \(L_t(w, x) \) is the labour demand curve (for regular workers) if temporary workers are used for the production of the \(S_2 \)-segment. Notice that a decline in \(x \) leads to a rightward shift of the \(L_t \)-curve.

If \(x \geq w_R \), i.e. the fee for temporary workers is higher than or equal to the wage \(w_R \), the trade union chooses the wage \(w = w_R \) that maximises its economic rent if only regular workers are employed, and the firm decides to employ only regular workers (point A). The upper threshold for \(x \) therefore is

\[\bar{x} \equiv w_R = \frac{1}{(\alpha + \beta) \kappa} \phi b. \]

(24)
Now suppose that the fee x for temporary workers is somewhat below \bar{x}. If the trade union still claimed the wage w_{R}, the firm would decide to employ temporary workers for the production of S_2, because $x < w_{R}$. In Figure 2, the corresponding labour demand curve (for regular workers) is depicted as the dashed line $L_t(w, x)$. If the trade union chooses a wage rate $w > x$, the firm chooses employment according to this $L_t(w, x)$–curve. Along this curve, the rent-maximising wage is given by w_T, leading to the employment level $L_t(w_T, x)$ (point B). As is evident from the figure, in this situation the trade union would be better off by instead choosing a wage $w_X = x$ that makes the firm to employ only regular workers (point C). The reason is that the corresponding economic rent

$$V_X(x) = L_t(x)(1 - \tau_w)(x - \phi b)$$

(25)

is higher than the utility level $V_T(x)$ corresponding to the indifference curve tangent to the $L_t(w, x)$-curve in point B.

If the fee for temporary workers further declines, the $L_t(w, x)$-curve and the indiffer-
ence curve representing the maximum level of economic rent in regime T shift to the right due to the complementarities in production mentioned in Section 3. Simultaneously, with decreasing x the economic rent achievable in regime X declines and the corresponding indifference curve shifts to the left. As depicted in Figure 2, there has to exist a lower threshold \underline{x} defined as the wage level for regular workers that renders the trade union indifferent between the situation in which only regular workers are used (point D) and the situation in which temporary workers replace regular workers in the production of segment S_2 (point E). The labour demand curve in the latter situation is given by $L_t(w, \underline{x})$. Hence, \underline{x} is implicitly defined by the condition

$$ V_T(\underline{x}) = V_X(\underline{x}). \tag{26} $$

If $x < \underline{x}$, the $L_t(w, x)$-curve lies to the right of the $L_t(w, \underline{x})$-curve. Hence, it no longer pays off for the trade union to prevent the employment of temporary workers because in this case $V_X(x) < V_T(x)$.

The graphical analysis using Figure 2 suggests that a lower threshold $\underline{x} < \overline{x}$ exists, where $\overline{x} = w_R$. Since the graphical results depend on the position of the $L_t(w, x)$-curves relative to the $L_r(w)$-curve, we have to make sure that the graphical intuition is correct. The formal proof, outlined in more details in Appendix A.3, is based on the following reasoning:

1. To determine the upper threshold \overline{x}, it is shown that for all values of the fee x with $x \geq w_R$ it is optimal for the trade union to claim the wage $w = w_R$. The alternative strategy of choosing a wage $w > x$, thereby inducing the firm to employ temporary workers for the production of segment S_2, is not in the interest of the trade union.\(^{10}\) This is demonstrated by noting that for $x = w_R$ it holds that $V_R > V_T(w_R)$. In other words, the wage-employment combination $(w_R, L_r(w_R))$ leads to a higher economic rent than the combination $(w_T, L_t(w_T, x = w_R))$. Moreover, because $\partial V_T(x)/\partial x < 0$, it must also hold

\(^{10}\)Note that for fees $x > w_R$ it can never be optimal to choose a wage w with $w_R < w < x$, because w_R is the rent-maximising wage if only regular workers are employed.
that \(V_R > V_T(x) \) for all \(x > w_R \). It can be concluded that for \(x \geq w_R \), the \(R \)-regime prevails in which it is the best strategy for the trade union to claim the wage \(w_R \), and for the firm to employ only regular workers.

2. It has already been noted in step 1 that \(V_R > V_T(w_R) \). Because of eqs. (21) and (25), it also holds that \(V_R = V_X(w_R) \). It can therefore be concluded that \(V_X(w_R) - V_T(w_R) > 0 \). Moreover, it can be shown that \(\partial[V_X(x) - V_T(x)]/\partial x > 0 \) for \(x \leq w_R \). In other words, the difference between the economic rents in regimes \(X \) and \(T \) declines with a decline in \(x \). However, at least for marginal declines in \(x \), it still holds that \(V_X(x) > V_T(x) \). This means that if \(x \) (marginally) declines below \(w_R \), it is better to set the wage equal to the fee of temporary workers (\(X \)-regime) in order to prevent temporary agency employment (\(T \)-regime). From points 1. and 2. it follows that \(\overline{x} = w_R \) indeed constitutes the upper threshold for the fee \(x \). For \(x \geq \overline{x} \) the \(R \)-regime prevails, whereas for (at least marginally) lower values than \(\overline{x} \) the \(X \)-regime is chosen.

3. Since \(V_X(w_R) - V_T(w_R) > 0 \) and \(\partial[V_X(x) - V_T(x)]/\partial x > 0 \) for \(x \leq w_R \), with declining \(x \) eventually a level \(\underline{x} \) is reached where \(V_X(x) = V_T(x) \). If \(\underline{x} \) were lower than the lowest admissible value of fee \(x \), denoted \(x_{\text{min}} \) and defined as \(x_{\text{min}} = \phi b \), regime \(T \) would never occur.\(^{11}\) However, it is shown that \(x_{\text{min}} < \underline{x} \) and \(V_X(x) - V_T(x) < 0 \) for all \(x \) with \(x_{\text{min}} \leq x < \underline{x} \). Hence, \(\underline{x} \) constitutes the lower threshold separating regimes \(X \) and \(T \).

5 Comparison of the different wage setting regimes

This section compares the levels of wages, employment and trade unions’ utilities for the three wage-setting regimes defined in Section 4. Starting with the comparison of wage levels, it immediately follows from the discussion in Section 4 that

\[
w_T > w_R > w_X, \tag{27}\]

\(^{11}\)As has been outlined in Section 2, \(x = (\phi b + s)/\delta \). The minimum value for \(x \) is obtained for \(\delta = 1 \) and \(s = 0 \), leading to \(x_{\text{min}} = \phi b \).
where \(w_X \) represents all wages \(w_X = x \) for \(x \in [x, \overline{x}) \). The first inequality is due the lower wage elasticity of labour demand for regular workers in regime \(T \) in comparison to regime \(R \). Hence, in the employment regime with temporary workers, the optimal wage \(w_T \) is higher than the monopoly wage \(w_R \) when only regular workers are employed. The second inequality results from unions’ incentive to undercut the wage \(w_R \) to prevent temporary agency employment if \(\underline{x} \leq x < \overline{x} \).

Regarding trade union utility, it follows from the determination of the threshold values \(\underline{x} \) and \(\overline{x} \) in Section 4 that

\[
V_R > V_X(x) > V_T(x) \quad \text{for } x > \underline{x}. \tag{28}
\]

From that discussion it is also evident that \(V_T(x) > V_X(x) \) if \(x < \underline{x} \) and that \(V_T(x) \) increases with declining \(x \). An interesting question left to answer is whether for values of \(x \) with \(x_{\text{min}} < x < \underline{x} \) it could be possible that \(V_T(x) > V_R \). This would mean that trade unions profit from the employment of (relatively cheap) temporary workers because of higher economic rents. However, in Appendix A.4 it is shown that, at least in our model, this result cannot occur. Instead, we conclude that

\[
V_R > V_T(x) \quad \text{for } x \geq x_{\text{min}} = \phi b. \tag{29}
\]

Hence, trade unions are always harmed by the employment of temporary workers.

Since in regimes \(R \) and \(X \) the same labour demand function is relevant and \(w_X < w_R \), it immediately follows that employment in regime \(X \) must be higher than employment in regime \(R \). Moreover, it must also hold that employment in regime \(R \) is higher than employment in regime \(T \). If this were not case, we would get a situation in which both wages and employment of regular workers are higher in regime \(T \) than in regime \(R \). This, however, would contradict the inequality in eq. (29). Therefore,

\[
L_r(w_X) > L_r(w_R) > L_l(w_T, x), \tag{30}
\]

where \(w_X \) again refers to wages \(w_X = x \) in the interval \(x \in [x, \overline{x}) \) that are chosen in regime \(X \). Note that the second inequality not only holds for \(x \in [x_{\text{min}}, \underline{x}) \), but for all \(x \geq x_{\text{min}} \). In Appendix A.5 it is explicitly shown that inequality (30) holds.
6 Summary and conclusions

This paper developed a theoretical model to analyse how the firms’ option to employ temporary agency workers affects the wage-setting behaviour of trade unions. In the model, the motive behind employing temporary agency workers is the reduction in costs and thereby the increase in profits when the fee for temporary workers is lower than the wage for regular workers. For simplicity, in our model monopoly unions are assumed that by their very nature have the highest wage-setting power. It is shown that, depending on the fee for temporary workers, unions may try to prevent the implementation of temporary agency work by deviating from the monopoly wage and accepting lower wages. In this case, firms are able to use the option to replace regular workers by temporary workers as a threat against unions, thereby lowering wage demands. Unions then only claim wages that are equal to the fee the firm would have to pay for temporary workers. As a consequence, the firms’ option to use agency workers may affect wage setting also in those firms that do not employ temporary agency workers. This is an important result for at least two reasons. First, empirical studies may come to wrong conclusions if they try to identify the wage effects of temporary agency work by comparing wage levels for regular workers in firms with and without temporary agency work. Second, though the share of agency workers in the total workforce is relatively small in many OECD countries, the impact of temporary agency work on the wage-setting process may be much larger.

It is also shown that if the fee for temporary workers is below a specific lower threshold, it is no longer the optimal strategy for trade unions to prevent the employment of temporary agency workers. Interestingly, since firms reduce the number of regular workers, it now is the best strategy for unions to claim wages that are even higher than the wage demands when the firms’ threat to replace regular workers is not credible. Hence, according to our model, the intensive use of temporary agency workers in high-wage firms may be the cause and not the consequence of the high wage level in those firms.

In the literature it is sometimes argued that the use of temporary agency work may also benefit trade unions because they would be able to appropriate higher economic rents.
It would then be in the interest of unions not to resist the employment of agency workers. However, at least in our theoretical model, such a scenario is highly unlikely. Even though we assumed monopoly unions that ascribe the highest possible wage-setting power to the unions, it turned out that for all plausible parameter values the economic rents of trade unions decline because of the firms’ option to use temporary agency work.
A Appendix

A.1 Right to manage versus efficient bargaining

Empirical studies lack a clear answer about whether the right-to-manage model or the efficient bargaining model is more relevant. If managers are asked about the issues covered in bargains with trade unions, the answers seem to unambiguously back up the right-to-manage model (Booth, 1995). This can be most clearly seen in the USA, where many collective agreements explicitly stipulate that employers retain the right to determine the level of employment. Even in countries where such a stipulation is not explicitly found in employment contracts, one gets the impression that trade unions typically do not bargain over employment.

Some economists have argued that bargaining over employment implicitly occurs through firm-union agreements on “manning” levels (by which capital-to-labour or labour-to-output ratios are meant). However, it is not clear why agreements on manning levels should be interpreted as contracts which implicitly determine the employment level. The reason is that, for instance, a fixed capital-labour ratio does not prevent firms from adjusting both capital and employment, or changing the number of shifts per machine (Layard et al., 1991, p. 96).

It is sometimes claimed that empirical studies which do not rely on survey data but focus on market outcomes would support the hypothesis that efficient bargains do, at least implicitly, occur (see, for example, Brown & Ashenfelter, 1986). However, Booth (1995, chap. 5) convincingly argues that the tests applied in these studies in order to distinguish between the right-to-manage model and the efficient bargaining model are flawed and therefore not credible. Empirical studies trying to identify the appropriate bargaining model from observed market outcomes are confronted with almost unsurmountable difficulties. In principle, each study has to make assumptions about trade unions’ preferences, technologies, other labour market imperfections, and the market structure. The

\[^{12}\text{For this discussion see, for instance, McDonald \& Solow (1981), Johnson (1990) and Clark (1990).}\]
empirical tests then are joint tests of these assumptions. For example, the shape of the contract curve depends on the preferences of union members and may even coincide with the labour demand curve.13 Hence, even if one focuses on the efficient bargaining model, different results are possible depending on trade union’s preferences. The critique goes further than that, since empirical studies have failed to significantly improve our knowledge about trade unions’ preferences (see, for example, Pencavel, 1991).

The fact that efficient bargains are not observed more frequently may be due to the fact that something important is missing in theoretical considerations which claim the superiority of wage-employment bargains. For instance, efficient bargains may not be enforceable. Since the bargaining outcome usually lies off the labour demand curve, the firm has an incentive to cheat and may try to increase profits at the bargained wage level by choosing employment according to its labour demand curve. If trade unions are unable to enforce the labour contract, they may prefer higher wages and lower employment as predicted by the right-to-manage model.14 For all these reasons, we consider the right-to-manage model to be a plausible framework for studying the impact of trade unions on labour market outcomes.

\subsection*{A.2 Utility maximisation of the trade union}

In the wage-setting regimes \(R \) or \(T \), the representative trade union chooses the optimal wage \(w_R \) or \(w_T \) by maximising its objective function (8) subject to the labour demand function \(L_r(w) \) or \(L_t(w,x) \) defined in eqs. (14) and (18), respectively. From the first-order condition it follows that

\[
\frac{-\partial L_r}{\partial w} \frac{w_R}{L_r} = \frac{w_R}{w_R - \phi b} \quad \text{and} \quad -\frac{\partial L_t}{\partial w} \frac{w_T}{L_t} = \frac{w_T}{w_T - \phi b}
\]

13See, for example, the “insider model” of Carruth & Oswald (1987) and the “seniority wage model” of Oswald (1993).

14If uncertainty and asymmetric information with respect to the future level of the firm’s goods demand are taken into account, the scope of incentive-compatible contracts may be severely limited due to the costs of information gathering and the problems associated with moral hazard.
for the R-regime and T-regime, respectively. Therefore,

\[w_R = \frac{\varepsilon_r}{\varepsilon_r - 1} \phi b \quad \text{and} \quad w_T = \frac{\varepsilon_t}{\varepsilon_t - 1} \phi b, \]

where ε_r and ε_t are defined in eqs. (15) and (19), respectively. If the tax rate for unemployment benefits is lower than that for wages, $\phi > 1$ holds, whereas $\phi = 1$ if the tax rate for unemployment benefits and wages is the same. In the case of the R-regime, the second-order condition for a utility maximum is

\[
(1 - \tau_w) \left[(w_R - \phi b) \cdot \frac{\partial^2 L_r}{\partial w^2} \bigg|_{w=w_R} + 2 \cdot \frac{\partial L_r}{\partial w} \bigg|_{w=w_R} \right] < 0.
\]

Since

\[
\frac{\partial L_r}{\partial w} \bigg|_{w=w_R} = -\varepsilon_r \cdot \frac{L_r(w_R)}{w_R}, \quad \text{and} \quad \frac{\partial^2 L_r}{\partial w^2} \bigg|_{w=w_R} = \frac{\varepsilon_r}{w_R} \cdot L_r(w_R) \cdot (1 + \varepsilon_r),
\]

it can be shown that the second-order condition for a utility maximum holds because

\[-L_r \cdot \frac{\varepsilon_r}{w_R} \cdot \phi b < 0\]

A similar reasoning applies to the second-order condition in the T-regime.

A.3 Determination of the wage-setting regimes

This appendix provides the details for the proof outlined in Section 4.

1. It is first shown that $V_R > V_T(w_R)$. Inserting the labour demand function $L_r(\cdot)$ from eq. (14) into the expression for V_R in eq. (21), one obtains

\[
V_R = (A_1 + A_2) [Q^{1-\kappa} w_R^{-1}]^{\frac{1}{1-\alpha+\beta}} (1 - \tau_w)(w_R - \phi b).
\]

Similarly, inserting $L_t(\cdot)$ from eq. (18) into the expression for V_T in eq. (23) for $x = w_R$ leads to

\[
V_T(w_T) = A_1 [Q^{1-\kappa} w_T^{-(1-\beta\kappa)} w_R^{-\beta\kappa}]^{\frac{1}{1-\alpha+\beta}} (1 - \tau_w)(w_T - \phi b).
\]

Hence, for $V_R > V_T(w_R)$ it must hold that

\[
\frac{A_1}{A_1 + A_2} \cdot \frac{w_T - \phi b}{w_R - \phi b} < \left[\frac{Q^{1-\kappa} w_R^{-1}}{Q^{1-\kappa} w_T^{-(1-\beta\kappa)} w_R^{-\beta\kappa}} \right]^{\frac{1}{1-\alpha+\beta}}.
\]
Because of the definition of A_1 and A_2 in eq. (13) and the definitions of w_R and w_T in eqs. (20) and (22), the LHS of this inequality is

$$\frac{A_1}{A_1 + A_2} \cdot \frac{w_T - \phi b}{w_R - \phi b} = \frac{\alpha}{\alpha + \beta} \cdot \frac{\alpha + \beta}{\alpha} = 1. \quad (32)$$

Hence, inequality (31) becomes

$$1 < \left[\frac{w_T}{w_R} \right]^{\frac{1-\beta}{1-\kappa(\alpha+\beta)}},$$

leading to $w_T > w_R$. Since the last inequality is true, also $V_R > V_T(w_R)$ holds.

As next step the derivative of $V_T(x)$ is computed. One obtains

$$\frac{\partial V_T(x)}{\partial x} = -\frac{\beta \kappa}{1 - \kappa(\alpha + \beta)} \frac{V_T(x)}{x} < 0$$

If these results are taken together, it can be concluded that for all fees $x \geq w_R$, the R-regime prevails in which it is the best strategy for the trade union to claim the wage w_R, and for the firm to employ only regular workers. 8 2. Using eqs. (23) and (25) for V_T and V_X, respectively and taking account of the labour demand functions (16) and (18), the difference in the rents achievable in regimes X and T is

$$V_X(x) - V_T(x) = Q^{\frac{1}{1-\kappa(\alpha+\beta)}} (1 - \tau_w) \cdot \left[(A_1 + A_2) x^{-\frac{1}{1-\kappa(\alpha+\beta)}} (x - \phi b) - A_1 \left[x^{-\beta \kappa} w_T^{-(1-\beta \kappa)} \right]^{\frac{1}{1-\kappa(\alpha+\beta)}} (w_T - \phi b) \right],$$

and its derivative with respect to fee x is

$$\frac{\partial [V_X(x) - V_T(x)]}{\partial x} = Q^{\frac{1}{1-\kappa(\alpha+\beta)}} (1 - \tau_w) \cdot \left[(A_1 + A_2) x^{-\frac{1}{1-\kappa(\alpha+\beta)}} \left(1 - \frac{1}{1 - \kappa(\alpha + \beta)} \frac{x - \phi b}{x} \right) \right.$$

$$+ \frac{\beta \kappa}{1 - \kappa(\alpha + \beta)} A_1 \left[x^{-\beta \kappa} w_T^{-(1-\beta \kappa)} \right]^{\frac{1}{1-\kappa(\alpha+\beta)}} \left[x^{-1} (w_T - \phi b) \right]$$

The term C is positive if

$$x < \frac{1}{\kappa(\alpha + \beta)} \phi b = w_R,$$

and it is zero if $x = w_R$. Hence, $x \leq w_R$ is sufficient for $\partial [V_X(x) - V_T(x)]/\partial x > 0$ to hold.
As has been explained in Section 4, it follows from points 1 and 2 that $\bar{x} = w_R$ indeed constitutes the upper threshold for the fee x. For $x \geq \bar{x}$ the R-regime prevails, whereas for (at least marginally) lower values than \bar{x} the X-regime is chosen.

3. Since $V_X(w_R) - V_T(w_R) > 0$ and $\partial [V_X(x) - V_T(x)]/\partial x > 0$ for $x \leq w_R$, with declining x eventually a level \underline{x} is reached where $V_X(\underline{x}) = V_T(\underline{x})$, implying

\[(A_1 + A_2) [Q^{1-\kappa} \underline{x}^{-1}]^{1-\kappa(\alpha+\beta)} (\underline{x} - \phi b) = A_1 [Q^{1-\kappa} w_T^{-(1-\beta \kappa)} \underline{x}^{-\beta \kappa}]^{1-\kappa(\alpha+\beta)} (w_T - \phi b). \]

Rearrangement leads to the following expression which implicitly defines \underline{x}:

\[\frac{\alpha}{\alpha + \beta} \left(\frac{w_T}{\underline{x}} \right)^{\frac{1-\beta \kappa}{1-\kappa(\alpha+\beta)}} = \frac{\underline{x} - \phi b}{w_T - \phi b}. \]

Theoretically, it may be possible that \underline{x} is lower than the lowest admissible value of fee x, denoted x_{min}, where $x_{\text{min}} = \phi b$. This would mean regime T never to occur. However, it can be shown that for x_{min} the difference in the utilities in regimes X and T is negative:

\[V_X(x_{\text{min}}) - V_T(x_{\text{min}}) = L_T(x_{\text{min}}) (1 - \tau_w) (\phi b - \phi b) - L_T(x_{\text{min}}) (1 - \tau_w) (w_T - \phi b) \]
\[= -L_T(x_{\text{min}}) (1 - \tau_w) (w_T - \phi b) < 0. \]

As $\partial [V_X(x) - V_T(x)]/\partial x > 0$ and $V_X(\underline{x}) - V_T(\underline{x}) = 0$, it holds that $x_{\text{min}} < \underline{x}$. Hence, regime T is a possible outcome of the model and \underline{x} constitutes the lower threshold separating regimes X and T.

A.4 Proof for $V_R > V_T(x)$ for $x > x_{\text{min}}$

Since $V_T(x)$ increases with declining x, it could be the case that for very low x the inequality $V_T(x) > V_R$ holds. In terms of Figure 2 this would mean that for a very low fee x the $L_T(x)$-curve may lie far enough to the right that the corresponding economic rent in regime T is higher than the economic rent achievable in regime R. However, it can be shown that in our model such a case cannot occur. To do so, it has to be shown that the highest achievable economic rent in regime T is lower than the rent achievable in regime R. Since $\partial V_T(x)/\partial x < 0$, the highest value of V_T is obtained at $V_T(x_{\text{min}})$, where
\(x_{\text{min}} = \phi b \). In the following, we will show that

\[
V_T(x_{\text{min}}) < V_R \tag{33}
\]

holds. Taking account of the definition of the utility functions in eqs. (21) and (23) and the labour demand functions in eqs. (14) and (18), this condition is met if

\[
\frac{A_1}{A_1 + A_2} \cdot w_T - \phi b < \left[\frac{w_T^{(1-\beta \kappa)}(\phi b)^{\beta \kappa}}{w_R} \right]^{\frac{1}{1-\kappa(\alpha+\beta)}}. \tag{34}
\]

Because of eq. (32), the LHS of this inequality is equal to one. Taking account of the definitions of \(w_R \) and \(w_T \) in eqs. (20) and (22), a rearrangement of inequality (34) leads to

\[
\kappa(\alpha + \beta) \left(\frac{1-\beta \kappa}{\alpha \kappa} \right)^{(1-\beta \kappa)} > 1. \tag{35}
\]

To show that this inequality is fulfilled, we set \(\alpha + \beta = z \) with \(z \leq 1 \). In the following, the cases \(z = 1 \) and \(z < 1 \) are considered separately.

Case 1: \(z = 1 \). Since in this case \(\alpha = 1 - \beta \), the LHS of inequality (35) becomes

\[
f := \kappa \left(\frac{1-\beta \kappa}{(1-\beta)\kappa} \right)^{1-\beta \kappa} \tag{36}
\]

It must be shown that \(f \) is greater than one for all admissible values of \(\beta \) and \(\kappa \). Because of the sign of the partial derivatives,

\[
\frac{\partial f}{\partial \beta} = \kappa^2 \left(\frac{1-\beta \kappa}{(1-\beta)\kappa} \right)^{1-\beta \kappa} \left[\frac{1-\beta \kappa}{(1-\beta)\kappa} \ln \left(\frac{1-\beta \kappa}{(1-\beta)\kappa} \right) - 1 \right] > 0,
\]

\[
\frac{\partial f}{\partial \kappa} = - \left(\frac{1-\beta \kappa}{(1-\beta)\kappa} \right)^{1-\beta \kappa} \left[1 + \beta \kappa \ln \left(\frac{1-\beta \kappa}{(1-\beta)\kappa} \right) \right] < 0,
\]

the lowest admissible values of \(\beta \) and the highest admissible values of \(\kappa \) must be considered. Since it holds that \(\lim_{\kappa \to 1} f = 1 \) and \(\lim_{\beta \to 0} f = 1 \), \(f \) is indeed greater than one for all admissible values of \(\kappa \) and \(\beta \). Hence, \(V_R > V_T(x) \) for all admissible values of the fee for temporary workers \((x \geq x_{\text{min}}) \) in the case \(\alpha + \beta = 1 \).
Case 2: $z < 1$. Since in this case $\alpha = z - \beta$, the LHS of inequality (35) becomes

$$h := z \kappa \left(\frac{1 - \beta \kappa}{(z - \beta)\kappa} \right)^{1-\beta \kappa}$$ \hspace{1cm} (37)

It must be shown that h is greater than one for all admissible values of β and κ. Because of the sign of the partial derivatives,

$$\frac{\partial h}{\partial \kappa} = -\kappa z \beta \left(\frac{1 - \beta \kappa}{(z - \beta)\kappa} \right)^{1-\beta \kappa} \ln \left(\frac{1 - \beta \kappa}{(z - \beta)\kappa} \right) < 0,$$

$$\frac{\partial h}{\partial \beta} = z \kappa^2 \left(\frac{1 - \beta \kappa}{(z - \beta)\kappa} \right)^{1-\beta \kappa} \left[\frac{1 - \beta \kappa}{(z - \beta)\kappa} - \ln \left(\frac{1 - \beta \kappa}{(z - \beta)\kappa} \right) - 1 \right] > 0,$$

the lowest admissible values of β and the highest admissible values of κ must be considered. It holds that

$$\lim_{\kappa \to 1} h = z \left(\frac{1 - \beta}{z - \beta} \right)^{1-\beta}.$$

In order to check whether this expression is still greater than one if β gets very small, we compute

$$\lim_{\beta \to 0} \left(\lim_{\kappa \to 1} h \right) = \frac{1}{z} \cdot z = 1.$$

Therefore, h is indeed greater than one for all admissible values of κ and β. Hence, $V_R > V_T(x)$ for all admissible values of the fee for temporary workers ($x \geq x_{\text{min}}$) in the case $\alpha + \beta < 1$.

Taken together, $V_R > V_T(x)$ for all admissible parameter values and $x \geq x_{\text{min}}$.

A.5 Comparison of labour demand in the different regimes

As has been explained in Section 5, employment in regime X is greater than employment in regime R because $w_X < w_R$. It is now shown that employment in regime R is greater than employment in regime T. Using eqs. (14), (18), (20), and (22), it turns out that employment in regime R is greater than that in regime T if

$$\left(\frac{\alpha}{\alpha + \beta} \right)^{1-\kappa(\alpha+\beta)} < \kappa(\alpha + \beta) \left(\frac{1 - \beta \kappa}{\alpha \kappa} \right)^{(1-\beta \kappa)}.$$

The RHS of this inequality is greater than one because of inequality (35). Since the LHS is smaller than one, the condition is met.
References

Economic Papers, 58, 137-156.

